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Antiphase boundaries in improper ferroelastic crystals: 
orientation and transformation of boundary structure 

I Rychetsky 
Institute of Physics. Czechoslovak Academy of Sciences, Na Slovance 2,18040 Prague, 
Czechoslovakia 

Received 10 January 1991 

Abstract Thick antiphase boundaries (APB) in improper ferroelasticcrystals are studied in 
the framework of the Landau expansion. Making use of the compatibility restrictions. WO 
qualitativelydifferent typesof boundaries are predicted. The stress-freeones have preferred 
temperaturedependent orientations, for which an explicit formula is calculated. The 
strained houndaries, in contrast, possess non-mechanical stress along the boundary plane 
also inthecrystallographiclock-in orientation with minimum energy. The transitionbetween 
linear and rotational Amstructurescan appearasa minimum in the preferred APBorientalion 
versus temperature curve. Consequently. the linear and orientational structures can be 
distinguished as well as determination ofthe APB transition Icmperature. A comparison with 
experimental obsrrvations is given. 

1. lntroduction 

Some improper ferroelastics, e.g. Gd,(MoO& (GMO), Hg,CI, and KSCN, undergo a 
phase transition with symmetry breaking from tetragonal toorthorhombicand doubling 
of the unit cell. In the low-temperature phase two types of domain walls can exist. 
Ferroelastic domain walls are formed between domains of different macroscopic states 
characterized by different strain tensors. Their coherent orientations are determined by 
the crystal symmetry and coincide with two mirror planes lost at the transition. The 
second type is an antiphase boundary (APB) joining two domains of identical strain 
tensors with structures mutually shifted by a translation lost at the transition. Conse- 
quently, all APB orientations are coherent but may still be energetically non-equivalent. 
The APB in GMO have been observed by several authors. Meleshina et al [I] using an 
etching method observed closed-loop boundaries and also boundaries beginning and 
terminating (see [Z]) at ferroelastic walls or  dislocations. All APB orientations appeared 
in the sample but one of them wasclearly preferred. The APB of the preferred orientation 
are probably boundaries with the lowest energy. Barkley and Jeitschko [3] pulled such 
boundaries out from dislocations by a moving ferroelectric and ferroelastic domain wall 
and then visualized them by chemical etching. The temperature dependence of the 
preferred A P B  orientation was measured. The etching method, as well as observations 
in GMO performed by Yamamoto et a l [ 4 ]  using electron microscopy and by Malgrange 
and Capelle [5] by x-ray topography, did not reveal any details of the internal boundary 
structure. On the basis of experimental data [3], Capelle and MaIgrange (61 have 
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Figure 1. The square (-) represents a tetra. 
gonal cell; the rectangle (- - - )  is an ortho. 
rhombiccell:x,yareaxesofthe tetragonalphase. 
while g. 7 are axes perpendicular and parallel, 
respenively, IO the APB. 

estimated the boundarythickness to beoftheorder 1OC-1000 A, i.e. about2C-2001attice 
constants. This supports the continuum approach to the APB. 

From the theoretical point of view. two qualitatively different types of APB exist. In 
the linear one the spontaneous strain tensor component has the same sign throughout 
the boundary. On the other hand, in the rotational APB that component changes itssign 
at the boundary centrc and, therefore, a nucleus of a ferroelastic layer domain appears 
inside the APB. Full saturation of the central domain leads to a splitting of the APB into 
two ferroelastic walls. Several authors [7-101 theoretically investigated the transition 
between linear and rotational APB structures without taking into account deformations. 
The rotational and linear structures have not been distinguished in experimentally 
observed APB [l, ?-51 since the boundary width is too small. 

Recently. some elastic properties of APB and ferroelastic domain walls in improper 
ferroelasticcrystals with the perovskite structure.e.g. SrTiO,, were theoretically studied 
1111. It was shown that the walls are generally three-dimensional objects rather than 
quasi-one-dimensional ones, but their profiles were not calculated. I t  was shown that 
quasi-one-dimensional domain walls can exist under an appropriate applied non-homo- 
geneous external stress. 

The paper is organized as follows. In section 2 the phenomenological description of 
the Hg,CI, crystal is presented and the role of crystal symmetry and topology is pointed 
out. In section 3 the linear and rotational APB, as well as the phase transition inside the 
APB. are reviewed without strains being taken into account. In section 4 the APB with 
compatible deformations is studied, the temperature dependence of the boundary 
orientation is calculated, and the stress-free boundaries and the APB possessing non- 
mechanical internal stress are analysed. The results are compared with experiments in 
section 5. 

2. The free energy 

We shall consider the improper ferroelasticcrystal Hg,CI? (and isomorphous mercurous 
halides Hg,Br, and Hg212) undergoing a phase transition from the tetragonal phase with 
space group Dkx (I4/mmm) to the orthorhombic phase with doubled unit cell (figure 1) 
and Dil (0") space group [12]. In the high-temperature phase the single crystal is 
built up of parallel chains along the z axis of weakly bound linear molecules CI-Hg-Hg- 
CI with one molecule in the primitive unit cell. The transverse acoustic soft modes of the 
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transition have wavevectors K(X1)  and K(X2) determined by two non-equivalent X- 
points of the Brillouin zone, XI = (&a,ih,O) and X 2  = (kz-$u,O). These modes are 
polarized in the xy plane and correspond to displacements of the centres of gravity of 
the molecules perpendicular to the z axis. The strong anisotropyof the chain structure 
and the physical properties (elastic moduli, birefringence, etc) of the crystal, together 
with the fact that the phase transition is induced by the soft mode lying (i.e. its K vector 
and polarization) in thexy plane, indicate that the two-dimensional approximationcould 
be adequate. We shall therefore assume that the only non-zero strain tensor components 
are U,,, uyy and uxy. The axesx, y are that of the tetragonal structure, while 5,  q are other 
ones rotated through an angle Q?. 

The free energy density expansion can be written as a sum of three parts: 

f=fo +fr +fa. 
The main contribution to  energy isf, [12]: 

fo  = W + q 2 )  +f” - q 2 ) 2  + iy’pZq2 +IK[(VP)Z + ( W I  
+lA(pz-q2)u6+/ i (p2  + q 2 ) ( u ,  + U 2 ) f $ ~ C j j U / U j - ~  ojui (2) 

where p, q is a two-component order parameter, and t = a(T-  Tc). For tensor com- 
ponents,thecontractednotationisused:w= l , y y = 2 , z z = 3 , y r = 4 , z x = 5 , x y = 6 ;  
U, is the stress tensor and cG are elastic constants. 

The last two parts in (1) involve higher-order terms in comparison withf,. They are 
given by the following expressions: 

fi = 6 ( u 1  + ~ 2 ) [ ( v p ) ~  + (WI + r i u d ( v ~ ) ~  - ( W I  
+ KI[(VP)’P)2 + ( W 1 2  + t i(u,  + U 2 ) ( P Z  + q2I2 
+ t;ua(p2 + q2)(pZ - 9’) + k[(u, + u,)pZqZ 

+ T1(p2 + 4 7 3  + t,(p’ + 42)(pZ - q 2 ) 2  + &(p2 + q2)pZqZ (3) 

and 

f a  = sku6(a ,~  ayp + axq a& + K ~ I ( ~ ~ P  a Y d 2  + (axq a Y d 2 1  
+ K3 axp dYp axq  ayq + K ~ [ ( ~ ~ P ) ~  + @,A4 + ( a d 4  + ( a y d 4 1  
+ f6(P2 - q2)(ax.p a , ~  + 8.4 a y d .  (4) 

In a unidirectional modulation, the special case of which is a planar domain wall, the 
order parameter is a function of only one space coordinate 5: p( r ) ,  q(5). The direction 
of the 5 axis is a general one for the present. The boundary plane is perpendicular to 5 
and its orientation is determined by the angle Q? (see figure 1). We should realize that 
the rotated coordinate system 5,  q is tied to the direction of modulation, while x, y are 
the tetragonal axes of the crystal itself. So, in order to rotate the modulation inside the 
crystal, only the derivatives have to be transformed while the strain tensor components 
are fixed inx,ycoordinate system. The relations between the rotatedcoordinatesystems 
are 

C=xcospl + y s i n q  q =  -xsinpl+ycospl. (5) 
Then the gradient terms in f ,  and J can be written in the form: (Vp)’ = and 
(V# = (diq)z. Hence it follows that fo and fi are fully isotropic with respect to the 
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modulation orientation in the crystal as they do not depend on Q?. The term fa is changed 
to 

f a  = 4 w 4 6  + %(P2 - qZ)lI(dcP)’ + (d5dZl sin(2Q?) 

+ H K ~ I C ~ [ ( ~ ~ P ) ~  + (dcd41 - Wxz f ”3)(dtP dc4)’I cos(4Q?) 

+ 4 ~ 4 [ ( d p ) ~  + (dcql41 + t ( 2 ~ 2  + ~ 3 ) ( d i ~  dGq)’. (6) 
The angle q appears in (6)  and therefore the term fa represents the part of the free 
energy crystallographically anisotropic with respect to the modulation orientation Q?. In 
fact, below the phase transition a unidirectional modulation of the orthorhombic phase 
can appear. Then the terms before the sine and cosine are non-zero and two crys- 
tallographic directions have extreme energy density, Q? = n/4, p = --n/4, as can be 
obtained by differentiating (6)  with respect to Q?. These directions correspond to two 
mirror planes of the orthorhombic phase. If the cosine term coefficient is large enough, 
two more extreme directions can appear. They are relicts of the two lost mirror planes 
of the tetragonal phase, but they have, however, non-crystallographic orientations in 
the orthorhombic phase. 

We shall assume that the mentioned anisotropy of the free energy with respect to the 
angle Q? arising from the crystal symmetry is not important in comparison with the 
influence of strains appearing inside the crystal in the low-temperature phase. 

The spontaneous strain components can be obtained making use of the equilibrium 
equations Jf/au; = 0: 

u l  = h(p’ +qZ)-rl[(dp)Z + (d#I -r1(p2 +q’)’ -klp’q’ + ulA1 
U’ = U ,  

U 6  =16(Pz - ~ 2 ) - ~ 6 [ ( d t P ) Z - ( d F 4 ) 2 1 - f 6 ( ~ Z + q 2 ) ( ~ 2  -4‘) 
(7) 

- bs~[(d tP)~  + (dtd’l sin(%) + 06A6 

I i  = -Ai l :  ri = Air; ti =A$: k, = Aikl s6 = A6sL 

where we set uL = u2 and AI = sll + sL2, A6 = s,; si, are elastic moduli. Substituting (7) 
into (1) and neglecting terms of order higher than 4, the density f is 

f = l 4 p ’  + 42) + tB(p2 - 9 2 ) 2  + Iyp ’q~  + iK[(VP)’ + (Vq)21 (8) 

in which B and yare renormalized j3’ and y’ .  Now it follows that the terms involving li, 
i = 1, 6, in formulae (7) are the only adequate terms with respect to the order of the 
expansion (8). Nevertheless, we show in the next section that the higher-order terms in 
(7) can lead to the temperature dependence of the APB orientation. 

Finally, we shall assume a unidirectional modulation without topological defects, 
e.g. dislocations. Then the minimization of the free energy (8) should be carried out 
with the compatibility conditions taken into account. Such auxiliary conditions are of 
topological nature and, in fact, remove the isotropy of the free energy (8) with respect 
to the angle p.  In the two-dimensional case the compatibility conditions reduce to only 
one equation [13]: 

282,udt)  = J;pi(T) + J&&) (9) 
where the strain components are functions of only. Making use of ( 5 ) ,  the derivatives 
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in equation (9) can be written with respect to 5 and q ,  while tensor components are kept 
in x ,  y coordinate system: 

sin(2q) + 6 ( < )  - a $ M )  = 0. (10) 
The equations (7), (8) and (10) are the basic formulae of our further considerations. 

3. Linear and rotational antiphase boundaries 

Let us first examine an APB without strains taken into account. Then the density (8) 
should be considered without the auxiliary compatibility condition (IO) and the free 
energy minimum corresponds to a spontaneous APB profile. 

From the formula (8) four degenerate domain states follow: (pa, 0), (-po, 0) and 
(O,po), (0, -po) with pi  = - r/p.The first two possess the same strains (7) with the 
component uQ = l&; in contrast, the last two ferroelastic states possess strains with 
the shear component U = - lap& Hereafter we shall consider the APB with the fol- 
lowing boundary conditions: ry 

p(+m) = - p(-m)=po and q ( + m ) = q ( - m ) = O .  (11) 
Thenthespontaneous~~~profile oftheminimumfreeenergywiththedensity(8)should 
be calculated making use of the Lagrang-Euler equations. Two types of APB exist. The 
linear one corresponds to the trivial solution and can be easily calculated setting q(5)  = 0 
(see e.g. [SI): 

p(5) = p o  tanh(K<) q(c) = 0 wherepi = - t /P ,  = - t / 2 ~ .  (12) 
The mapping of the linear APE in the order parameter space is a straight line contour. 
When the solution (12) is unstable with respect to the linearvibrationsof the q component 
then the rotational APB with q(x)  + 0 can exist. 

Thestable rotational boundary of finite width needs also the sixth-order terms in the 
expansion (8) (see [9],  [lo]). Nevertheless, the formulae (7) remain valid and are 
sufficient for our purposes. The spontaneous rotational APB profile has been solved 
analytically only in special cases [7-91. Nevertheless, an approximate formula can be 
written (such a conclusion is supported by the analysis performed in [%lo]): 

P(<) =PO tanb(.%) q(<) = +A cosh-'(Kc) (13) 
where K is defined in (12) and the amplitude A is an order parameter of the phase 
transition between the linear and the rotational structure. ForA = 0 equations (13) give 
linearstructure (12), whileforA > Othe two degeneratestatesofthe rotational boundary 
follow. The qualitative difference between the linear and rotational structuresis evident 
when looking at the strain tensor component u6 in (7). Both APE structures have the 
same boundary conditions u6( -m)  = u6(+m) = 1,p; but in the centre of the linear 
structure u6(O) = 0 while in the rotational case u6(0) = -1yl' (we have neglected gradi- 
ent terms in (7)). In the rotational boundary the sign of u6 changes. This corresponds to 
the creation of a ferroelastic domain nucleus. When A = p a  one of two saturated 
homogeneous statesp = 0, q = %pa appears in the boundary centre and the APB splits 
fully into two ferroelastic walls. 

The spontaneous value of the amplitude (order parameter) A corresponding to the 
spontaneousprofileminimizingthe free energywill be denotedA,. In[& 101 it wasshown 
that the spontaneous amplitude A, follows the Landau-type temperature dependence, 
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A, - (T ,  - T)’”, where T, is the boundary transition temperature and T, < T < Tc. 
Below T, we have A. = 0. Thus, the rotational boundary exists in the temperature 
interval A = T, - T,. Further we construct for A, a formula with the above-mentioned 
Landau dependence near T,: 

A ,  = zpo(1 - t2/Az)1/2 (14) 

where f = T - Tc. Close to Tc (I+ 0-) we have z = A,/po. The coefficient I measures 
the degree of saturation of the nucleus in the APB centre close to Tc. The transition in 
the APB occurs at f = r, = -A < 0. 

The mapping of the rotational APB (13) in the order parameter space is an elliptic 
contourp2(5‘)/p$ + @([)/A’ = 1. 

4. Strains in antiphase boundaries 

Spontaneous linear and rotational structures were obtained in the preceding section. 
The spatial dependence of the spontaneous (plastic) strains is given by the formulae (7) 
setting U, = 0 and profiles (12) and (13) with the spontaneous amplitude A,. We shall 
assume only compatible deformations. Then the compatibility condition (10) has to be 
fulfilled; consequently. the isotropy of the free energy (8) is removed and internal non- 
mechanical [14] stresses U ,  and u6 can appear. 

We shall start from the profile (13) in which both linear and rotational structures are 
involved. Substituting (13) into (7) the approximate formulae for the strain tensor 
componentscan be obtained: 

U ,  = u2 = L,p(c)’  + CI + Alul  U6 = i@([)’ + c6 + 1260.6  (15) 

where L , ,  L 6 ,  C, and C6 are temperature-dependent coefficients that, up to L6, do not 
depend on q. The calculation of L ,  and L6 and the proof of (15) are given in the 
appendix. The formulae for L ,  and L6 read: 

L I  = L I  - ,1(A/po)’ -sit- h~(A/po)~ t  

Lb = 16 k(A/Po)’ - Sbf hdA/~o)‘t  L6 = L ,  -g, sin(2q)t (16) 

where gi = r , / 2 K  - ll/p, gb = r b / k  - Ig/p, ga = S6/4K, h I = fl/p and h I = t l /p .  
Further we shall consider in general non-spontaneous APB profiles of the elliptic 

contour in the order parameter space given by equation (13) with the only degree of 
freedom A .  In the preceding section A, denotes the spontaneous value corresponding 
to the minimum free energy without considering the compatibility condition. For the 
sake of simplicity we shall assume that the internal stresses U, appear only due to the 
deviation of the amplitudeA from itsspontaneousvalue A,. Thenequations (15) can be 
written in the form: 

whereA is, for the present, undetermined and the stresses u’follow from equation (17): 
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ui = A;’[ui(A) - ui(A,)] 
ui(A) = ui(A,) + Aiui. 

i =  1 , 6  

The last equation in (18) is in fact that of (15). The elastic stresses are zero only ifA = 
A,. Finally, the compatibility equation (10) and the formulae (17) yield 

sin(2q) = L~ ( A ) / L ~ ( A )  (19) 

sin(%) = 2(Ll/L6)/{1 + 11 - 4(L,/L,)(g,/L6)rl”2). (20) 

or expressing L6 according to (16), 

The expressions (20) and (16) determine the temperature dependence of the APB orien- 
tation. The solution has two branches, upper one q , ( r )  and lower one q Z ( t )  = 
n/2 - q,(t). These branches join each other when L ,  = &. 

Let us first consider the linear APB, which does not undergo transformation into 
the rotational structure. Then the spontaneous amplitude A, is equal to zero. Three 
examples of the upper branches q , ( t )  are shown in figure 2, while the lower branches 
q2(t)  = n/2 - q,( t )  are not depicted in the figure. Nevertheless, the lower branch qz(t) 
can be constructed by reilecting ql(r) in the laxis. The curve ‘a’ has a straight-line part 
abovetpmesponding to the single solution of equation (19) with the non-zero amplitude 
A #A, = 0, while below tc the amplitude has its spontaneous value A = A ,  = 0. 

In order to discuss the solutions of equation (19) in more detail, we shall construct 
the strainellipse and look at itsvariation across the boundary. Theequation oftheellipse 
is obtained from (15) as 

[ ( L l  + L6)p2(c) + c, f C6h2 + [(Ll - E6)p2(5) + cl - c6]v2 1 (21) 
where p, v are principal axes rotated through n/4 relative to x, y. Three cases are 
possible: 

(i) Ll < L6 and A = A, = 0 (figure 3(a)). For each point 5 an ellipse (21) can be 
constructed. One can easily show that all such ellipses (two of them are shown in figure 
3(a)) intersect at four invariant points A, B, C, D. Then the APB planes are depicted by 
two dotted lines AB, CD and two plane normals, c,, c2 contain with the x axis the angles 
q,, q2, respectively. These angles are two solutions of equation (19) symmetrically 
distributed around q = n/4. Let us choose one ql(t) curve, e.g. the ‘a’ curve, in figure 
2. Then this regime (L2 < L,) occurs for I < I,. The lower branch q z ( t )  = n/2 - ql(r) is 
not depicted. 

Theboundaryprofileisgivenby(12),i.e. theamplitudeA = A ,  = Ohasspontaneous 
zero value, and no additional deformations are needed. The elastic stress is zero accord- 
ing to (18) and the boundary is stress-free. 

(ii) L,  = L6 and A = A, = 0 (figure 3(6)). AU ellipses (21) touch at two invariant 
points A, B and the dotted line CD represents a single boundary plane. Its normal 5 
contains with the x axis the angle q = n/4, which is the only solution of equation (19). 
For the curve ‘a’ in figure 2 this holds at I = t,, where q,(t,) = q2( tr )  = n/4 and both 
branches merge. 

The boundary is still stress-free since its profile (12) has not been modified, but, 
contrary to the above case, only one possible orientation exists. The amplitudeA has its 
spontaneous zero value, i.e. A = A, = 0. 

(iii) Ll > L6 when A = A ,  = 0 (figure 3(c)). This case is qualitatively different. 
Equation(19) hasnosolutionforA =A,  = O.Thenanytwoellipses(21)donot intersect, 
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Figure 2. The temperature dependence of the 
orientation angle q, of the linear APB. The lower 
branchqg,=rr/2- p,isnotdepicted.Curve'a': 
11 = 29, 16= 1, g, = 0. g, = 1, g. = 3. For t S I ,  
the APE is stress-free; for t, C t < 0 the strained 
APB appears locked in 9 = nI4. Curve *b': I ,  = 
1.1 ,16= 1, g, = 0, g, = 1.g. = 3. Curve'c': I ,  = 
0.4,1,= l ,g ,  =O,g,= l,g.=3.Onlystress-free 
boundaries appear in 'b' and 'c'. 

Figure 3. Strain ellipses corresponding to 
equation (21). (a )  AU ellipses (21) intersect at four 
points A, B, C, D; only two of them are shown. 
AB and CD are the APB planes; their normals 5,. 
5 2  contain with the x axis angles p,, q,, respect. 
ively. Equation(13) has twosolutionscp,,p,and 
the MB are stress-free. (b)  All ellipses (21) touch 
at two points C, D, and the angle p = n/4 is the 
onlysolutionof equation (13). The APB normal 5 
coincides with the principal axis f i  of the strain 
ellipses. (c) AU ellipses (21) do not intersect and 
equation (13) hasnosolution. T h c ~ ~ e i s  strained 
and locked at 9 = n/4. 

the spontaneous profile (12) is not adequate and an additional deformation is needed in 
order to satisfy the compatibility conditions. The new compatible profile has to satisfy 
equation (19). Then its amplitude A is the solution of the equation 

L , ( A )  = &(A) (22) 
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which is, in fact, a consequence of the compatibility restriction. The explicit formula for 
A could be easily obtained from (22) and we do not write it here. The equation (22), 
from which the amplitude A ought to be calculated, corresponds to a deformation of 
ellipses in figure 3(c) until they touch at two points C, D as depicted in figure 3(b). The 
orientation is locked in the crystallographic value q = n/4. The boundary plane is 
represented by the dotted line in figure 3(c) for the incompatible APB and in figure 3(b) 
for the compatible one. For the curve ‘a’ in figure 2 this situation occurs for t > t.. Then 
the amplitude A decreases according to equation (22) from its maximum value at t = 0 
to the spontaneous zero value at t = I , .  

The boundary is strained even in the orientation with minimum energy. It means 
that the non-mechanical stress (see e.g. [14]) appears along the APE plane according to 
(18)sinceA #A, .  Thecompatible profileisthe rotationalone (13) ,  where theamplitude 
A is obtained from equation (22). The full deformation u;(A) of the strained APE now 
consists of the plastic ui(A,) and the elastic uf parts: ui(A) = ui(A,) + uf ,  uf = A p i  
(see equation (18)). 

Till now we have discussed the APB orientationswith minimum energy. Nevertheless, 
other orientations possessing higher energy can also appear, though with lower prob- 
ability, and the  patterncan can consist of complicatedcurvedlinesorloops. Two limiting 
cases are instructive. If the boundary energy possesses only small anisotropy then one 
can expect a nearly isotropic APE pattern. On the other hand, large anisotropy leads to 
patterns with clearly preferred orientations, either two non-crystallographic ones with 
angles q and q2 (figure 3(a)) or one crystallographic orientation with q = n/4 (figures 
3(b) and (c)) .  Finally, one can also conclude that the APB of an orientation with higher 
energy has rotational structure since the amplitude A is necessarily noa-zero. 

In summary the strained APB locked at the crystallographic orientation q = n/4 
(Ll(A) = L6(A) only if A # 0) has rotational structure with A given by (22) and A # 
A, = 0. It becomes a stress-free APE with linear structure (A = A, = 0) when L,(O) = L 
,(Oh and for Ll(0) < L6(0) takes one of two degenerate orientations q qz. In the limit 
Ll/L6+ 0 these orientations approach crystallographicvalues q 1  = 0, q2 =n/2. 

The linear APE without transition into the rotational structure was discussed above. 
Now, let us assume the occurrence of such transition at a, i.e. T, < Tc. Then the 
formula for the angle q versus temperature dependence can be directly obtained. First, 
substituting the spontaneous amplitude A, from equation (14) into (16) two expressions 
follow: 

Ll  = I ,  - IlrZ(l - tZ/AZ)  -glt - h1z4(l - tZ/A2)2t 

L6 = f6 + l6z2(1 - t Z / A z )  - ggt + h6r4(l - tZ/AZ)’t. 
(23) 

Finally, the orientation versus temperature dependence is determined by (20) and (23). 
The solution has two branches, upper one ql(t) and lower one q&) = n/2 - q l ( t ) .  
Three representative examples of the q l ( t )  curve (upper branch) are shown in figure 4. 
In comparison with the linear case in figure 2, a minimum on the q l(t) curve can appear 
at t = tw (curves ‘b’ and ‘c’). This minimum has the following meaning. Decreasingtfrom 
0 to tw (i.e. decreasing Tfrom Tc to Tw), the new domain nucleus in the APE centre is 
pushedoutand theamplitudeA = Asgiven by(l4)decreasestozero. At t,therotational 
structure is transformed to the linear one sinceA = A, = 0. Thus the minimum in figure 
4 corresponds to the phase transition of the APE structure. The curves ‘b’ and ‘c’ do not 
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Figurc 4. The temperature dependence of the 
orientation angle ‘p, of the APE undergoing tran- 
sition between the linear and rotationalstructure. 
Theparametersare:l,= l,g, =O.g,= I,h,  = 1, 
h6= 1 , z =  1;andforcurve’a’, l i=2,6,g,=l;  
for curve %’, 1 ,  = 1.9, g. = 1; for c u m  *c’, I ,  = 
1.1, g. = 3. The transition temperature is f .  me 
straight-line part of curve *a’ corresponds to the 
strained APB. 

reach the f axis and so the APB structure is stress-free all times, since in such a case 
equation (19) has a solution for the spontaneous amplitude A,. Curve ‘a’ shows a 
more complicated situation. The stress-free rotational structure withA = A, (given by 
equation (14)) occurs above I,. In the range f, < f < t ,  the APB possesses the strained 
rotational structure with A #A,, where A is the solution of equation (22). Below f, the 
APE becomes linear and stress-free with A =A,  = 0. The temperature fr has the same 
sense in figures 2 and 4. 

5. Conclusions 

We have studied the APB in the improper ferroelastic crystal Hg,Cl, in the framework 
of the Landau theory. The results of our analysis are valid also for improper ferroelastic 
substances with the same form of the free energy, e.g. KSCN, and qualitatively also for 
other crystals with the transition from tetragonal to orthorhombic phase, even if they 
have different free energy expansion, e.g. Gd,(Mo04)3. 

The spontaneous order parameter induces spontaneous deformation of each small 
piece of the crystal inside the boundary. If the mutual compatibility of the spontaneous 
deformations is satisfied for an appropriately oriented APB without any additional defor- 
mations, then such an APB is stress-free and has minimum energy in the crystal. Never- 
theless, other orientations with lower probability can also occur. The preference of a 
non-crystallographic APB orientation, but with frequent occurrence of all others, was 
observed in GMO by Meleshina el nl [I]. We have calculated the most probable APB 
orientation versus temperature dependence. The obtained curve ‘b’ in figure 2 is in good 
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of the minimum energy and the compatible APB is forced to possess rotational structure. 
Then a stress exists in the boundary plane which can lead to the creation of topological 
defects in a long enough APB. The strained boundary orientation is locked in the 
crystallographic position, and in the case of high anisotropy of the free energy with 
respect to the APB orientation we expect the APB to be oriented in the crystal practically 
onlyatthislock-inorientation. Thestrainedm~cannot beverylong. Inthe KSCNcrystal 
Schranz et al[15] observed etch lines consisting of short grooves in the crystallographic 
direction. The authors interpreted them as APB. They are possible candidates of the 
strained boundaries which we have predicted above. 

Both structures are present in the 'a' curve of figure 2. The strained boundary of the 
rotational structure exists for f, < f < 0 and the stress-free linear one appears for t s tr. 
Thus the APB is released at f,. 

The rotational structure of the APB was theoretically predicted by several authors [8- 
101 and thepossibilityoftransition betweenlinear androtational boundaries was pointed 
out. We have shown that this transition can manifest itself by an appearance of the 
minimum in the preferred APB orientation versus temperature dependence. Then the 
APB structure can be distinguished: the Linear one occurs for f S tw and the rotational one 
for f > t,. Such a phenomenon has not been experimentally observed so far. 

Finally we conclude that further measurements would be desirable to confirm our 
theory. Knowledge of the boundary orientation versus temperature dependence in 
KSCN would resolve the problem of whether the observed grooving in KSCN [U] really 
consists of strained APB. Also measurements of the APB internal deformations would be 
desirable. An attempt to observe the APB in Hg2CI2 would be interesting since they have 
not been detected so far in these crystals. 

We have presented the two-dimensional theory with respect to deformations, which 
is simple enough to obtain analytic expressions for the APB compatible profile and the 
formulae for its most probable orientation in the crystal. Our results are closely related 
to experimental observations and they allow one to classify the APB patterns in crystals. 
We have shown that sometimes non-mechanical internal stresses can appear inside the 
APB. We expect that the two-dimensional approach is relevant in such cases when the 
most important deformationsnear Tcarethose inone plane. Suchcandidatesare crystals 
with uniaxial elastic anisotropy in the high-temperature phase (tetragonal symmetry), 
extreme examples of which are mercurous halides. The two-dimensional approximation 
can fail for crystals in which deformations along all three directions are of importance 
near Tc. Such a situation can occur, e.g. in perovskite-type compounds like SrTiO,, 
with cubic symmetry above Tc. Then a three-dimensional model has to be used as was 
pointed out in [ll]. 
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Appendix 

The calculation of L1, & and the proof of equations (13) are presented. For the profile 
(13) the following identities are valid: 

p 4 ( f )  =p$p2(5) -o(5)  whereo(c) =p$[tanh*(KC) - tanh'(Kc)J (Al) 
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Figure 5. In the appendix equation (AI) reads: 
p(x)‘ =pip(x)’ - o(x). The function o(x)  
(broken curve) is small in comparison with the 
function pip(%)’ (fd curve). Both functions 
depicted are divided by p i .  

‘_. 

;Vx- 
(dp)’ = -Kzp’(5) +piKZ -e(C) 

where a ( t )  =p;@[cosh-’(Kc) - co~h-~(Kf)] .  (A2) 
Similaridentitiesarealsovalidforq‘(~), (dfl)’, q’(t) andp*(g)$(t),whichareinvolved 
in (7). A comparison of the leading term p&~’(c)  and the function o(5) in (Al) is 
displayed in figure 5. The ratio of the maximum value of o(6) and the maximum of 
p i p Z ( f )  is 1. A similar relation holds also for (A2). We can, therefore, treat o and a as 
small functions. 

Using the above identities, each term in equations (7) can be written in the form 

where C, E are constants and 4(f) is small relative to Cp2(C). Then the summation in 
(7) gives 

CPYC) + + d  (D (A3) 

(A4) 
U I  = uz = LIP(C)’ + CI + Oi(C3 + Ai01 

U 6  = LdC)’  + c b  f O6(5)  f A606 

where L , ,  i6 are renormalized parameters I , ,  16, and Of, O6 are small functions that can 
be neglected. The formulae for L, and L6 are given by the formulae (16). In a similar 
way also coefficients C1 and C6 could be expressed as functions of the amplitude A and 
temperature f. but they are not of interest to us here. 
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