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Abstract. Thick antiphase boundaries (APB) in improper ferroelastic crystals are studied in
the framework of the Landau expansion. Making use of the compatibility restrictions, two
qualitatively different types of boundaries are predicted. The stress-free ones have preferred
temperature-dependent orientations, for which an explicit formula is calculated. The
strained boundaries, in contrast, possess non-mechanical stress along the boundary plane
also in the crystallographiclock-in orientation with minimum energy. The transition between
linear and rotational APB structures can appear as a minimum in the preferred APB orientation
versus temperature curve. Consequently, the linear and orientational structures can be
distinguished as well as determination of the APB transition temperature. A comparison with
experimental obscrvations is given.

1. Introduction

Some improper ferroelastics, e.g. Gd,(MoQ,}; (GM0), Hg,Cl; and KSCN, undergo a
phase transition with symmetry breaking from tetragonal to orthorhombic and doubling
of the unit ceil. In the low-temperature phase two types of domain walls can exist.
Ferroelastic domain walls are formed between domains of different macroscopic states
characterized by different strain tensors. Their coherent orientations are determined by
the crystal symmetry and coincide with two mirror planes lost at the transition. The
second type is an antiphase boundary (AP} joining two domains of identical strain
tensors with structures mutually shifted by a translation lost at the transition. Conse-
quently, all ApB orientations are coherent but may still be energetically non-equivalent.
The APB in GMO have been observed by several authors. Meleshina et af [1] using an
etching method observed closed-loop boundaries and also boundaries beginning and
terminating (see [2]} at ferroelastic walls or dislocations. All APB orientations appeared
in the sample but one of them wasclearly preferred. The ApB of the preferred orientation
are probably boundaries with the lowest energy. Barkley and Jeitschko 3] pulled such
boundaries out from dislocations by a moving ferroelectric and ferroelastic domain wall
and then visualized them by chemical etching. The temperature dependence of the
preferred ApB orientation was measuwred. The etching method, as well as observations
in GMO performed by Yamamoto et a/ [4] using electron microscopy and by Malgrange
and Capelle [5] by x-ray topography, did not reveal any details of the internal boundary
structure. On the basis of experimental data [3], Capelle and Malgrange [6] have
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Figure 1, The square ( ) represents a tetra-
gonal cell; the rectangle (——~) is an ortho-
rhombiccell; x, y are axes of the tetragonal phase,
while &, i are axes perpendicular and parallel,
respectively, to the APB.

estimated the boundary thickness to be of the order 100-1000 A, i.e. about 20-200 lattice
constants. This supports the continuum approach to the ApB.

From the theoretical point of view, two qualitatively different types of ApPB exist. In
the linear one the spontaneous strain tensor component has the same sign throughout
the boundary. On the other hand, in the rotational ApB that component changes its sign
at the boundary centre and, therefore, a nucleus of a ferroelastic layer domain appears
inside the APB. Full saturation of the central domain leads to a splitting of the APB into
two ferroelastic walls. Several authors [7-10] theoretically investigated the transition
between linear and rotational APB structures without taking into account deformations.
The rotational and linear structures have not been distinguished in experimentally
observed apB [1, 3-5] since the boundary width is too small.

Recently, some elastic properties of ArB and ferroelastic domain walls in improper
ferroelastic crystals with the perovskite structure, e.g. SrTiO;, were theoretically studied
{11]. It was shown that the walls are generally three-dimensional objects rather than
quasi-one-dimensional ones, but their profiles were not calculated. It was shown that
quasi-one-dimensional domain walls can exist under an appropriate applied non-homo-
geneous external stress.

The paper is organized as follows. In section 2 the phenomenological description of
the Hg,Cl, crystal is presented and the role of crystal symmetry and topology is pointed
out. In section 3 the linear and rotational APB, as well as the phase transition inside the
APB, are reviewed without strains being taken into account. In section 4 the ApB with
compatible deformations is studied, the temperature dependence of the boundary
orientation is calculated, and the stress-free boundaries and the APB possessing non-
mechanical internal stress are analysed. The results are compared with experiments in
section 5,

2. The free energy

We shall consider the improper ferroelastic crystal Hg,Cl, (and isomorphous mercurous
halides Hg,Br; and Hg,1,) undergoing a phase transition from the tetragonal phase with
space group DY (J4/mmm) to the orthorhombic phase with doubled unit cell (figure 1)
and D} (Cmiem) space group [12]. In the high-temperature phase the single crystal is
built up of parallel chains along the z axis of weakly bound linear molecules Cl-Hg-Hg-
Cl with one molecule in the primitive unit cell. The transverse acoustic soft modes of the
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transition have wavevectors K(X,) and K(X,) determined by two non-equivalent X-
points of the Brillouin zone, X, = (ia,44,0) and X, = (3a, —4a,0). These modes are
polarized in the xy plane and correspond to displacements of the centres of gravity of
the molecules perpendicular to the z axis. The strong anisotropy of the chain structure
and the physical properties (elastic moduli, birefringence, etc) of the crystal, together
with the fact that the phase transition is induced by the soft mode lying (i.e. its K vector
and polarization) in the xy plane, indicate that the two-dimensional approximation could
be adequate. We shall therefore assume that the only non-zero strain tensor components
are iy, u,, and u,,. The axes x, y are that of the tetragonal structure, while {, n are other
ones rotated through an angle ¢.
The free energy density expansion can be written as a sum of three parts:

f=fo+fi+fa oy
The main contribution to energy is f;, [12]:
fo=34(p*+4*) +1B'(p* - ¢°)* +1v'p*q” +1x[(Vp)* + (Vg)’]

+15(p? — gP)ue +1(p? + gy + 1) +3 2 Cylkild; = 2 o ()
where p, g is a two-component order parameter, and ¢ = a(T— T¢). For tensor com-
ponents, the contracted notationisused: xx =1,yy =2,zz=3,yz2=4,zx =5,xy = 6;
o;is the stress tensor and c; are elastic constants.

The last two parts in (1) involve higher-order terms in comparison with fo. They are
given by the following expressions:

fi=ri(uy +u)[(Vp) + (Vg)?] + rius((Vp)® — (V4)*]

+ &, [(Vp)? + (V@) *]* + t1(uy + up)(p? + ¢°)

+ t5ug(p? + g2)(P? — §7) + ki{uy + uy)pq’

+5(p? + q%)° + 15(p? + ¢*)(p? — ¢O)* + ki(p? + ¢P)p?q? (3)
and
fa=siug(d,p dyp +8,q3,q9) + k2[(3:p 9,9)* + (3.9 8,p)°]

+K33,p0,p 0,9 0,q + ki[(3.0)* + (3,m)* + (3.9)* + (8,9)*]

+56(P* — 4%)(3.p 8,p + 3.9 8,9). (4)

In a unidirectional modulation, the special case of which is a planar domain wall, the
order parameter is a function of only one space coordinate £: p({}, g(£). The direction
of the { axis is a general one for the present. The boundary plane is perpendicular to
and its orientation is determined by the angle @ (see figure 1). We should realize that
the rotated coordinate system £, 7 is tied to the direction of modulation, while x, y are
the tetragonal axes of the crystal itself. So, in order to rotate the modulation inside the
crystal, only the derivatives have to be transformed while the strain tensor components
arefixedinx, y coordinate system. The relations between the rotated coordinate systems
are

E=xcos@ +ysing 1n = —xsin @ + ycos g, (5)

Then the gradient terms in fp and f; can be written in the form: (Vp)? = (d.p)’ and
(Vg)? = (dyq)*. Hence it follows that f; and f; are fully isotropic with respect to the
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modulation orientation in the crystal as they do not depend on ¢. The term f; is changed
to

Fo = Hsiug + 5o(p* — ¢D(dp)* + (d;9)?) sin(2¢)
+ Hxy[(dep)* + (deg)*] — H2k, + x;3)(dyp drq)®} cos(de)
+ 3, [(dpp)* + (d:9)*] + 32K, + k3)(dep dig)?. (6)

The angle @ appears in {6) and therefore the term f, represents the part of the free
energy crystallographically anisotropic with respect to the modulation orientation ¢. In
fact, below the phase transition a unidirectional modulation of the orthorhombic phase
can appear. Then the terms before the sine and cosine are non-zero and two crys-
tallographic directions have extreme energy density, ¢ = z/4, ¢ = —a/4, as can be
obtained by differentiating (6) with respect to . These directions correspond to two
mirror planes of the orthorhombic phase. If the cosine term coefficient is large enough,
two more extreme directions can appear. They are relicts of the two lost mirror planes
of the tetragonal phase, but they have, however, non-crystallographic orientations in
the orthorhombic phase.

We shall assume that the mentioned anisotropy of the free energy with respect to the
angle ¢ arising from the crystal symmetry is not important in comparison with the
influence of strains appearing inside the crystal in the low-temperature phase,

The spontaneous strain components can be obtained making use of the equilibrium
equations 8f/du; = 0:

uy = L(p* +¢°) —r1[(dep)’ + (deq)*] —11(p* + 47) — kipq* + 01 A,
My = i,
us = l(p? —g%) — re[(drp)* — (d;@)?] —ts(p* + ¢*)(P* — 4%)
— ds[(dep)? + (d:@)*]sin(2@) + 06 As
L=—Ad ri=Agri t = At} ki= Akl sg = Agsi

™)

where we set o) = oy and A = sy3 + 512, Ag = S¢s; 5y are elastic moduli. Substituting (7)
into (1) and neglecting terms of order higher than 4, the density fis

f=1ta(p?*+4%) +1B(p* — ¢°)* + bypq* + x[(Vp)* + (Vg)’] (8)

in which 8 and ¥ are renormalized B’ and v'. Now it follows that the terms involving [,
i=1, 6, in formulae (7) are the only adequate terms with respect to the order of the
expansion (8). Nevertheless, we show in the next section that the higher-order terms in
(7) can lead to the temperature dependence of the APB orientation.

Finally, we shall assume a unidirectional modulation without topological defects,
e.g. dislocations. Then the minimization of the free energy (8) should be carried out
with the compatibility conditions taken into account. Such auxiliary conditions are of
topological nature and, in fact, remove the isotropy of the free energy (8) with respect
to the angle . In the two-dimensional case the compatibility conditions reduce to only
one equation [13]:

20%us(L) = a%,u, (L) + 3%uy(8) 9

where the strain components are functions of § only. Making use of (5), the derivatives



APB in improper ferroelastics 7121

in equation (9) can be written with respect to £ and #n, while tensor components are kept
in x, y coordinate system:

sin(2g) a3:us(L) — 8%;uz(£) = 0. (10)
The equations (7), (8) and (10) are the basic formulae of our further considerations.

3. Linear and rotational antiphase boundaries

Let us first examine an APB without strains taken into account. Then the density (8)
should be considered without the auxiliary compatibility condition (10) and the free
energy minimum corresponds to a spontaneous APB profile.

From the formula (8) four degenerate domain states follow: {pg, 0), (—pg, 0) and
(0, po), (0, —py) with pi = — t/B.The first two possess the same strains (7) with the
component u,, = lsp3; in contrast, the last two ferroelastic states possess strains with

the shear component u,, = — [;p§. Hereafter we shall consider the APB with the fol-
lowing boundary conditions:
p(+®)=—p(~®)=p;  and  g(+»)=q(-®)=0. (11)

Then the spontaneous APB profile of the minimum free energy with the density (8) should
be calculated making use of the Lagrange-Euler equations. Two types of ApB exist. The
linear one corresponds to the trivial solution and can be easily calculated setting g({) =0

(sece.g. [8]):
p(f)=potanh(K) () =0  wherepf = —t/B, K* = —t/2x. (12)

The mapping of the linear APB in the order parameter space is a straight line contour.
When the solution (12) is unstable with respect to the linear vibrations of the g component
then the rotational apB with g(x) % 0 can exist.

The stable rotational boundary of finite width needs also the sixth-order terms in the
expansion (8) (see [9], [10]). Nevertheless, the formulae (7) remain valid and are
sufficient for our purposes. The spontaneous rotational APE profile has been solved
analytically only in special cases [7-9]. Nevertheless, an approximate formula can be
written (such a conclusion is supported by the analysis performed in [8-10]):

p(8) = py tanh(KE) g(£) = £ A cosh™' (K7) (13)

where K is defined in (12) and the amplitude A is an order parameter of the phase
transition between the linear and the rotational structure. For A = () equations (13) give
linear structure (12), whilefor A > Othe two degenerate statesof the rotational boundary
follow. The qualitative difference between the linear and rotational structures is evident
when looking at the strain tensor component u, in (7). Both APB structures have the
same boundary conditions ug(—~%) = #s(+%) = /;p§ but in the centre of the linear
structure u¢(0) = 0 while in the rotatiopal case u4(0) = —I,A? (we have neglected gradi-
ent terms in (7)). In the rotational boundary the sign of 1, changes. This corresponds to
the creation of a ferroelastic domain nucleus. When 4 = p; one of two saturated
homogeneous states p = (0, g = £p, appears in the boundary centre and the APB splits
fully into two ferroelastic walls.

The spontaneous value of the amplitude {(order parameter) A corresponding to the
spontaneous profile minimizing the free energy will be denoted A;. In[8, 10]it wasshown
that the spontaneous amplitude A, follows the Landau-type temperature dependence,
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A~ (T, — T2, where T, is the boundary transition temperature and T, < T < Te.
Below T, we have A, = 0. Thus, the rotational boundary exists in the temperature
interval A = T — T,,. Further we construct for A; a formula with the above-mentioned
Landau dependence near T,,;:

A= 2po(l - /A (14)

where t = T — T¢. Close to T¢ (t— 0—) we have z = A,/p,. The coefficient z measures
the degree of saturation of the nucleus in the APB centre close to Te. The transition in
the APR occursatr =, = —A <0,

The mapping of the rotational ApB (13) in the order parameter space is an elliptic

contour p*(£)/p} + ¢*(0)/A% = 1.

4. Strains in antiphase boundaries

Spontancous linear and rotational structures were obtained in the preceding section.
The spatial dependence of the spontaneous { plastic) strains is given by the formulae (7)
setting o; = 0 and profiles (12} and (13) with the spontaneous amplitude A,. We shall
assume only compatible deformations. Then the compatibility condition (10) has to be
fulfilled: consequently, the isotropy of the free energy (8) is removed and internal non-
mechanical [14] stresses o, and o, can appear.

We shall start from the profile (13) in which both linear and rotational structures are
involved. Substituting (13) into (7) the approximate formulae for the strain tensor
components can be obtained:

uy=u;=Lp(£) + C, + Ao, g = Lep(E)? + Cq + Agoyg (15)

where L, L,, C, and C, are temperature-dependent coefficients that, up to L, do not
depend on @. The calculation of L, and L and the proof of (15) are given in the
appendix. The formulae for L, and L read:

L=l ~L(A/po)* — g1t — hi(Afpg)tt
Ly =1lg+ 1s(A/Po)” — 8ot + he(AfPo)*t L= L¢—g,sin(2e)t (16)

where g, =r,/2k — 1,/B, 8 = re/2k — 1s/B, g = se/4x, by = t/Band b, = 1;/B.

Further we shall consider in general non-spontaneous Apg profiles of the elliptic
contour in the order parameter space given by equation (13) with the only degree of
freedom A. In the preceding section A, denotes the spontaneous value corresponding
to the minimum free energy without considering the compatibility condition. For the
sake of simplicity we shall assume that the internal stresses g; appear only due to the
deviation of the amplitude A from its spontanecus value A;. Then equations (15) can be
written in the form:

ur(A) = ux(A) = Li(A)p(£)? + C,(4)
ug(A) = Lg(Ap(£)* + Co(A)

where A is, for the present, undetermined and the stresses o* follow from equation (17):

(17
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0; = A u(A) — uy(A))) i=1,6
#(A) = u;(A) + Ao

The last equation in (18) is in fact that of (15). The efastic stresses are zero only if A =
A;. Finally, the compatibility equation (10) and the formulae (17) vield

(18)

sin(2g) = L1(4)/Ls(A) (19)
or expressing L according to (16),
sin(2¢) = 2(L1 /Le)/{1 + [1 = 4(L/Le)(ga/Le )]}, (20)

The expressions (20) and (16) determine the temperature dependence of the APB orien-
tation. The solution has two branches, upper one @,(f) and lower one @,(t) =
#/2 — @,(¢). These branches join each other when L, = L.

Let us first consider the linear APB, which does not undergo transformation into
the rotational structure. Then the spontaneous amplitude A, is equal to zero. Three
examples of the upper branches ¢ ,(#) are shown in figure 2, while the lower branches
@o(t) = /2 — ¢,(¢) are not depicted in the figure. Nevertheless, the lower branch @ ,(f)
can be constructed by reflecting @ ,(¢) in the ¢ axis. The curve ‘a’ has a straight-line part
above, corresponding to the single solution of equation (19) with the non-zero amplitude
A # A, =0, while below ¢, the amplitude has its spontaneous value A = A, = 0.

In order to discuss the solutions of equation (19) in more detail, we shall construct
the strain ellipse and look at its variation across the boundary. The equation of the ellipse
is obtained from (15} as

[(Ly + Le)p*(E) + Cy + Celu® + Ly = L)p*(2) + €y = Colv? = (21)

where u, v are principal axes rotated through x/4 relative to x, y. Three cases are
possible:

(i) Ly < L;and A = A, = 0 (figure 3{a)). For each point £ an ellipse (21) can be
constructed. One can easily show that all such ellipses (two of them are shown in figure
3(2)) intersect at four invariant points A, B, C, D. Then the APB planes are depicted by
two dotted lines AB, CD and two plane normals, {;, {, contain with the x axis the angles
@1, @3, respectively. These angles are two solutions of equation (19) symmetrically
distributed around @ = /4. Let us choose one ¢ {¢) curve, e.g. the ‘a’ curve, in figure
2. Then this regime (L, < L) occurs for ¢ < t,. The lower branch @,(2) = /2 — ¢,(1) is
not depicted.

The boundary profile is given by (12), i.e. the amplitude A = A, = Ohasspontaneous
zero value, and no additional deformations are needed. The elastic stress is zero accord-
ing to (18) and the boundary is stress-free.

(i) L; = Lg and A = A, = 0 (figure 3(b)). All ellipses (21) touch at two invariant
points A, B and the dotted line CD represents a single boundary plane. Its normal §
contains with the x axis the angle ¢ = /4, which is the only solution of equation (19).
For the curve ‘a’ in figure 2 this holds at ¢ = £, where @,(;) = @,(t,) = #/4 and both
branches merge.,

The boundary is still stress-free since its profile (12) has not been modified, but,
contrary to the above case, only one possible orientation exists. The amplitude A has its
spontaneous zero value, i.e. A = 4,= 0.

(iii) L, > Ls when A = A, =0 (figure 3(c)). This case is gualitatively different.
Equation (19) hasnosolutionforA = A, = 0. Thenany two ellipses (21) do not intersect,
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Figure 2. The temperature dependence of the
orientation angle ¢, of the linear APB. The lower
branch @, = /2 — ¢, is not depicted. Curve ‘a”:
=29 1,=1,2,=0g=1,g=3 Fort<y,
the APB is stress-free; for ¢, <7< 0 the strained
APB appears locked in @ = x/4, Curve ‘b*: ], =
L1, l,=1,81=0,8,=1,g=3. Curve *¢": I, =
0.4,0,=1,8,=0,g, = 1,2, = 3. Only stress-free
boundaries appear in ‘b’ and ‘¢".

Figure 3. Strain ellipses corresponding to
equation (21). (a) Alletlipses (21)intersect at four
points A, B, C, D; only two of them are shown.
AB and CD are the app planes, their normals £,
£, contain with the x axis angles ¢, @4, respect-
ively. Equation (13) has two solutions ¢, ¢, and
the arB are stress-free, (5) All ellipses (21) touch
at two points C, D, and the angle @ = /4 is the
onty solution of equation (13). The APB normal £
coincides with the principal axis i of the strain
ellipses. (c) All elfipses (21) do not intergect and
equation (13) has no solution. The ApB is strained
and locked at ¢ = m/4,

the spontaneous profile (12} is not adequate and an additional deformation is needed in
order to satisfy the compatibility conditions. The new compatible profile has to satisfy
equation (19). Then its amplitude A is the solution of the equation

L\(A) = Ls(A)

(22)
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which is, in fact, a consequence of the compatibility restriction. The explicit formula for
A could be easily obtained from (22} and we do not write it here. The equation (22),
from which the amplitude A ought to be calculated, corresponds to a deformation of
eliipses in figure 3(c) until they touch at two points C, D as depicted in figure 3(b). The
orientation is locked in the crystallographic value @ = /4. The boundary plane is
represented by the dotted line in figure 3(¢) for the incompatible APB and in figure 3(b)
for the compatible one. For the curve ‘a’ in figure 2 this situation occurs for ¢ > .. Then
the amplitude A decreases according to equation (22) from its maximum value at ¢ = 0
to the spontaneous zero value at ¢ = ¢,.

The boundary is strained even in the orientation with minimum energy. It means
that the non-mechanical stress (see e.g. [14]) appears along the APB piane according to
(18) since A # ‘A,. The compatible profile is the rotational one (13), where the amplitude
A is obtained from equation (22). The full deformation u{A) of the strained APB now
consists of the plastic u,(4,) and the elastic uf parts: u;(A) = w,(A;) + uf, uf = A0,
(see equation (18)).

Till now we have discussed the APBE orientations with minimum energy. Nevertheless,
other orientations possessing higher energy can also appear, though with lower prob-
ability, and the APB pattern can consist of complicated curved lines or loops. Two limiting
cases are instructive. If the boundary energy possesses only small anisotropy then one
can expect a nearly isotropic ApB pattern. On the other hand, large anisotropy leads to
patterns with clearly preferred orientations, either two non-crystallographic ones with
angles g, and @, (figure 3{a)) or one crystallographic orientation with ¢ = /4 (figures
3(b) and (c)). Finally, one can also conclude that the APB of an orientation with higher
energy has rotational structure since the amplitude A is necessarily non-zero.

In summary the strained apB locked at the crystallographic orientation ¢ = /4
(L{A) = L4(A) only if A # 0) has rotational structure with A given by (22) and A #
A; = 0. It becomes a stress-free APB with linear structure (4 = A; = 0) when L,{0) = L

s(0), and for L,(0) < L4(0) takes one of two degenerate orientations ¢, @,. In the limit
L,/L¢— 0 these orientations approach crystallographic values ¢, = 0, @, =m/2.

The linear APB without transition into the rotational structure was discussed above.
Now, let us assume the occurrence of such transition at ¢, i.e. T, < T Then the
formula for the angle @ versus temperature dependence can be directly obtained. First,
substituting the spontaneous amplitude A, from equation (14) into (16) two expressions
follow:

L} = Il - 1122(1 - t2/A2) — gyt hlz4(1 - tz/Az)zt
(23)
Lé = [6 + !622(1 - tZ/AZ) — g6l + h5Z4(1 - tZ/Az)zt-

Finally, the orientation versus temperature dependence is determined by (20) and (23).
The solution has two branches, upper one @,(¢) and lower one @,(f) = /2 — ().
Three representative examples of the @ (¢) curve (upper branch) are shown in figure 4.
In comparison with the linear case in figure 2, a minimum on the @ ,(¢) curve can appear
att = £, (curves ‘b’ and *c’). This minimum has the following meaning. Decreasing ¢ from
0toz, (i.e. decreasing T from T, to T,,), the new domain nucleus in the APB centre is
pushed out and the amplitude A = A, given by (14) decreasestozero. At the rotational
structure is transformed to the linear one since A = A, = 0. Thus the minimum in figure
4 corresponds to the phase transition of the APB structure. The curves ‘b” and ‘¢’ do not
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T

o]

5

60 Figure 4. The temperature dependence of the
orientation angle @, of the APB undergoing tran-
sition between the tinear and rotational structure,
The parametersare:lo= 1,8, =0,g,= 1,h =1,
he=1,z=1;and for carve '2’, [, =2.6,g,=1;

i for curve ‘b, [, = 1.9, g, = 1; for curve *¢’, I, =
45 A = 1.1, g, = 3. The transition temperature is t,. The
-5 trtw £ 0 straight-line part of curve ‘a’ corresponds to the

t strained APB.

reach the ¢ axis and so the APB structure is stress-free all times, since in such a case
equation (19) has a solution for the spontaneous amplitude A,. Curve ‘a’ shows a
more complicated situation. The stress-free rotational structure with A = A, (given by
equation (14)) occurs above 4. In the range ¢, <1< { the APB possesses the strained
rotational structure with A # A, where A is the solution of equation (22). Below ¢, the
APB becomes linear and stress-free with A = A, = 0. The temperature ¢, has the same
sense in figures 2 and 4.

5. Conclusions

We have studied the APB in the improper ferroelastic crystal Hg,Cl, in the framework
of the Landau theory. The results of our analysis are valid also for improper ferroelastic
substances with the same form of the free energy, e.g. KSCN, and qualitatively also for
other crystals with the transition from tetragonal to orthorhombic phase, even if they
have different free energy expansion, e.g. Gd,(MoQ,),.

The spontaneous order parameter induces spontaneous deformation of each small
piece of the crystal inside the boundary. If the mutual compatibility of the spontaneous
deformations is satisfied for an appropriately oriented Aps without any additional defor-
mations, then such an APB is stress-free and has minimum energy in the crystal. Never-
theless, other orientations with lower probability can also occur. The preference of a
non-crystallographic APB orientation, but with frequent occurrence of all others, was
observed in GMO by Meleshina er al [1]. We have calculated the most probable APB
orientation versus temperature dependence. The obtained curve *b’ in figure 2 is in good
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of the minimum energy and the compatible APB is forced to possess rotational structure.
Then a stress exists in the boundary plane which can lead to the creation of topological
defects in a long enough APB. The strained boundary orientation is locked in the
crystallographic position, and in the case of high anisotropy of the free energy with
respect to the APB orientation we expect the APB to be oriented in the crystal practically
only atthis lock-in orientation. The strained APB cannot be very long. In the KSCN crystal
Schranz et al [15] observed etch lines consisting of short grooves in the crystallographic
direction. The authors interpreted them as Apg. They are possible candidates of the
strained boundaries which we have predicted above.

Both structures are present in the ‘a’ curve of figure 2. The strained boundary of the
rotational structure exists for ¢, < ¢ < 0 and the stress-free linear one appears for ¢ < ¢,.
Thus the APB is released at ¢,

The rotational structure of the APB was theoretically predicted by several authors [8—
10] and the possibility of transition between linear and rotational boundaries was pointed
out. We have shown that this transition can manifest itself by an appearance of the
minimum in the preferred APB orientation versus temperature dependence. Then the
APB structure can be distinguished: the linear one occurs for 7 < ¢, and the rotational one
for ¢ > t,,.. Such a phenomenon has not been experimentally observed so far.

Finally we conclude that further measurements would be desirable to confirm our
theory. Knowledge of the boundary orientation versus temperature dependence in
KSCN would resolve the problem of whether the observed grooving in KSCN [15] really
consists of strained APB. Also measurements of the A internal deformations would be
desirable. An attempt to observe the APB in Hg,Cl, would be interesting since they have
pot been detected so far in these crystals,

We have presented the two-dimensional theory with respect to deformations, which
is simple enough to obtain analytic expressions for the APB compatible profile and the
formulae for its most probable orientation in the crystal. Our results are closely related
to experimental observations and they allow one to classify the APB patterns in crystals.
We have shown that sometimes non-mechanical internal stresses can appear inside the
APB. We expect that the two-dimensional approach is relevant in such cases when the
mostimportant deformations near T are those in one plane. Such candidates are crystals
with uniaxial elastic anisotropy in the high-temperature phase (tetragonal symmetry),
extreme examples of which are mercurous halides. The two-dimensional approximation
can fail for crystals in which deformations along all three directtons are of importance
near 7. Such a situation can occur, e.g. in perovskite-type compounds like SrTiO,,
with cubic symmetry above 7. Then a three-dimensional model has to be used as was
pointed out in [11].
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Appendix

The calculation of L,, L4 and the proof of equations (13) are presented. For the profile
(13) the following identities are valid:

P& =pip*(f)—o(f)  whereo(L) = piltanh’(KL) — tanh*(KZ)] (A1)
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Figure 5. In the appendix eguation (A1) reads:
pix)* =pip(x)? —o(x). The function o(x)
(broken curve) is small in comparison with the
function pip(x)? (full curve)., Both functions

X depicted are divided by pg.
(dyp)? = —K*p*(L) +pbK* — (L)
where +(£) = p} K*[cosh™2(KE&) ~ cosh™%(K?)]. (A2)

Similar identities are also valid for g*(£), (d:9)?, 4%(£) and p*(£)g*({), which are involved
in (7). A comparison of the leading term p3p2(£) and the function o(£) in (Al) is
displayed in figure 5. The ratio of the maximum value of 0(f) and the maximum of
pip(%) is 1. A similar relation holds also for (A2). We can, therefore, treat o and ¢ as
small functions.

Using the above identities, each term in equations (7) can be written in the form

Cp*(E) + B+a() (A3)
where C, B are constants and ¢(£) is small relative to Cp*(£). Then the summation in
{7) gives

up=uy =L\p(§)* +C, +0,(5) + A0y

g = Lep(§)® + Cg + O6(8) + Ago
where L,, L, are renormalized parameters {,, [y, and Gy, G4 are small functions that can
be neglected. The formulae for L; and L, are given by the formulae (16). In a similar

way also coefficients C; and C, could be expressed as functions of the amplitude A and
temperature ¢, but they are not of interest to us here.

(Ad)
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